
CORBAservices: Common Object Services Specification 6-1

Life Cycle Service Specification 6

6.1 Service Description

6.1.1 Overview

Life Cycle Service defines services and conventions for creating, deleting, copying and
moving objects. Because CORBA-based environments support distributed objects, the
Life Cycle Service defines conventions that allow clients to perform life cycle
operations on objects in different locations.

This overview describes the life cycle problem for distributed object systems.

The problem of creation

Figure 6-1 illustrates the problem of a client in one location creating an object in
another.

Figure 6-1 Life Cycle service defines how a client can create an object “over there”.

To create an object in a different location, the following questions must be answered:

• Can the client control the location for the new object?

THERE

Client

HERE

6-2 CORBAservices: Common Object Services Specification

6

• On the other hand, can the location be determined according to some administered
policy?

• What entity does the client communicate with in order that a new object is created?

• How does the client find that entity?

• How much control does the client have over deciding the implementation of the
created object?

• Can the client influence the initial values of the newly created object?

• Can the client create an object in an implementation specific fashion?

The problem of moving or copying an object

 Figure 6-2 illustrates the problem of moving or copying an object in a distributed
object system.

Figure6-2 Life Cycle Service defines how a client can move or copy an object over there.

To support moving or copying an object, the following questions must be answered:

• Can the client control the location for the copied or migrated object?

• On the other hand, can the location be determined according to some administered
policy?

• What entity does the client communicate with to copy or migrate the object?

• How does the client find that entity?

• What happens to the implementation code of a copied or migrated object?

THEREHERE

DocumentClient

SOMEWHERE

Life Cycle Service: v1.0 Service Description November 1996 6-3

6

The problem of operating on a graph of distributed objects

Distributed objects do not float in space; they are connected to one another. The
connections are called relationships. Relationships allow semantics to be added to
references between objects. For example, relationships allow one object to contain
another. Life Cycle services must work in the presence of graphs of related objects.

Figure6-3 The object life cycle problem for graphs of objects is to determine the boundaries
of a graph of objects and operate on that graph. In the above example, a document
contains a graphic and a logo, refers to a dictionary and is contained in a folder.

Figure 6-3 illustrates the object life cycle problem for graphs of objects. In the
example, the folder contains a document, the document contains a graphic and a logo
and references a dictionary. The graphic references the logo that is contained in the
document. For graphs of objects, life cycle services must answer the following
questions:

• What are the boundaries of the graph? For example, if a client copies the document,
which objects are affected?

• If multiple objects are affected, how is the life cycle operation actually applied to
those objects?

• Are cycles in the graph preserved? For example, if copying the document results in
copying the graphic and the logo, is the cycle preserved in the copy?

6.1.2 Organization of this Chapter

This specification defines services and conventions to answer these life cycle issues.

Section 6.1.3 specifies a client’s model of object life cycle. It describe the model a
client has of factories and life cycle operations. A wide variety of implementations of
this model are possible.

Section 6.1.4 discusses factory finders in detail.

THEREHERE

Document

graphic

logo

Folder

Dictionary

SOMEWHERE

Client

6-4 CORBAservices: Common Object Services Specification

6

Section 6.2 defines the CosLifeCycle module. This module defines the service
interfaces and the interface supported by objects that participate in the service.

Section 6.3 discusses factory implementation strategies.

Section 6.4 discusses how objects can use factories and factory finders to support the
copy and move operations.

Section 6.5 summarizes the object life cycle framework.

Appendix A contains an addendum to the Life Cycle Service; the addendum
provides a specification for compound life cycle operations.

This chapter also includes additional appendices that are not part of the Life Cycle
Service specification: they are included as background material. Appendix B suggests
a filtering language for the filter criteria. Appendix C discusses administration of
generic factories. Appendix D discusses support for PCTE objects.

6.1.3 Client’s Model of Object Life Cycle

A client is any piece of code that initiates a life cycle operation for some object. A
client has a simple view of the life cycle operations.

Client’s Model of Creation

The client’s model of creation is defined in terms of factory objects. A factory is an
object that creates another object. Factories are not special objects. As with any object,
factories have well-defined IDL interfaces and implementations in some programming
language.

Figure6-4 To create an object “over there” a client must posses an object reference to a
factory over there. The client simply issues a request on the factory.

There is no standard interface for a factory. Factories provide the client with
specialized operations to create and initialize new instances in a natural way for the
implementation. Figure 6-5 illustrates a factory for a document.

interface DocFactory {

Document create();

Document create_with_title(in string title);

THERE

Client

HERE

DocFactory

Life Cycle Service: v1.0 Service Description November 1996 6-5

6

Document create_for(in natural_language nl);

};

Figure6-5 An example of a document factory interface. This interface is defined for clients as
a part of application development.

Factories are object implementation dependent. A different implementation of the
document could define a different factory interface.

While there is no standard interface for a factory, a generic factory interface is defined
by the life cycle service in section 6.2.3. A generic factory is a creation service. It
provides a generic operation for creation. Instead of invoking an object specific
operation on a factory with statically defined parameters, the client invokes a standard
operation whose parameters can include information about resource filters, state
initialization, policy preferences, etc.

To create an object, a client must possess an object reference for a factory, which may
be either a generic factory or an object-specific factory, and issue an appropriate
request on the factory. As a result, a new object is created and typically an object
reference is returned.

There is nothing special about this interaction.

A factory assembles the resources necessary for the existence of an object it creates.
Therefore, the factory represents a scope of resource allocation, which is the set of
resources available to the factory. A factory may support an interface that enables its
clients to constrain the scope.

Clients find factory objects in the same fashion they find any object. Two common
scenarios for clients to find factories are:

• Clients use a finding mechanism, such a naming context, drag-and-drop, or a trader,
to find factories.

• Clients are passed factory objects as a parameter to an operation the client supports.

Various implementation strategies for factories are discussed in detail in section 6.3.

6-6 CORBAservices: Common Object Services Specification

6

Client’s Model of Deleting an Object

A client that wishes to delete an object issues a remove1 request on an object
supporting the LifeCycleObject interface. (The LifeCycleObject interface is defined in
section 6.2.) The object receiving the request is called the target.

Figure6-6 To delete an object, a client must posses an object reference supporting the
LifeCycleObject interface and issues a remove request on the object.

Figure 6-6 illustrates a client deleting the document.

Client’s Model of Copying or Moving an Object

A client that wishes to move or copy an object issues a move or copy request on an
object supporting the LifeCycleObject interface. The object receiving the request is
called the target.

The move and copy operations expect an object reference supporting the
FactoryFinder interface. The factory finder represents the “THERE” in Figure 6-7.
The client is indicating to move or copy the target using a factory within the scope of
the factory finder. Section 6.1.4 describes factory finders in more detail.

1.The operation is named remove, rather than delete, because delete collides with the delete operator in
C++.

HERE

DocumentClient

SOMEWHERE

LifeCycleObject

Life Cycle Service: v1.0 Service Description November 1996 6-7

6

The implementations of move and copy can use the factory finder to find appropriate
factories “over there”. Section 6.4 describes how objects can implement move and
copy using the factory finder. This is invisible to the client.

Figure6-7 Life cycle services define how a client can move or copy an object from here to
there.

In the example of Figure 6-7, client code would simply issue a copy request on the
document and pass it an object supporting the FactoryFinder interface as an argument.

When a client issues a copy request on a target, it is assumed that the target, the
factory finder, and the newly created object can all communicate via the ORB. With
externalization/internalization there is no such assumption. In the presence of a future
externalization service, the externalized form of the object can exist outside of the
ORB for arbitrary amounts of time, be transported by means outside of the ORB and
can be internalized in a different, disconnected ORB.

Note – In general, a client is unaware of how a target and a factory finder are
implemented. The target may represent a simple object or it may represent a graph of
objects. Similarly, a factory finder may represent a very concrete location, such as a
specific storage device, or it may represent a more abstract location, such as a group of
machines. The client uses the same interface in all of these cases.

6.1.4 Factory Finders

Factory finders support an operation, find_factories, which returns a sequence of
factories. Clients pass factory finders to the move and copy operations, which typically
invoke this operation to find a factory to interact with. (This is described in detail in
section 6.4.) The new copy or the migrated object will then be within the scope of the
factory finder.

Some examples of locations that a factory finder might represent are:

• somewhere on a work group’s local area network

• storage device A on machine X

• Susan’s notebook computer

THEREHERE

DocumentClient

SOMEWHERE

Factory
Finder

LifeCycleObject

6-8 CORBAservices: Common Object Services Specification

6

Multiple Factory Finders

The factory finder interface given in section 6.2 represents the minimal functionality
supported by all factory finders. Target implementations can depend on this operation
being available. More sophisticated factory finding facilities can be provided by
extended finding services.

Currently, the only finding service being considered for standardization by the OMG is
the naming service. Others are likely to be standardized in the future. It is likely that
there will always be multiple finding services, of different expressive powers, in
distributed object systems.

As demonstrated in Figure 6-8, the FactoryFinder interface can be mixed-in with
interfaces for finding services, allowing multiple finding services. Many clients simply
pass factory finders on to target objects. However, objects that need the services of a
more powerful finding mechanism can narrow the factory finder to an appropriate,
more specific interface.

Figure6-8 The FactoryFinder interface can be “mixed in” with interfaces of more powerful
finding services.

The power of a factory finder is determined by the power of the finding service.

6.1.5 Design Principles

Several principles have driven the design of the Life Cycle Service:

1. A factory object registered at a factory finder represents an implementation at that
location. Thus, a factory finder allows clients to query a location for an
implementation.

2. Object implementations can embody knowledge of finding a factory, relative to a
location. Object implementations usually do not embody knowledge of location.

3. The desired result for life cycle operations such as copy and move depends on
relationships between the target object and other objects. The design given in
Appendix A has built-in support for the two most basic kinds of relationships,
containment and reference, and supports the definition of new kinds of relationships
and propagation semantics.

4. The Life Cycle Service is not dependent on any particular model of persistence and
is suitable for distributed, heterogeneous environments.

5. The design does not include an object equivalence service nor rely on global object
identifiers.

FactoryFinder

NamingBasedFactoryFinder

FactoryFinder

TradingBasedFactoryFinder

NamingContext Trading

Life Cycle Service: v1.0 Service Description November 1996 6-9

6

6.1.6 Resolution of Technical Issues

This specification addresses the following issues that were identified for the Life Cycle
Service in the OMG Object Services Architecture2 :

• Creation: Many of the parameters supplied to an object create operator will be
implementation-dependent, so that a standardized universal IDL signature for object
creation is not possible. IDL signatures for object creation will be defined for
various kinds of object factories, but the signatures will be specific to type,
implementation, and persistent storage mechanism of the object to be created.

• Deletion: A remove operator is defined on any object supporting the
LifeCycleObject interface. This model for deletion supports any desired paradigm
for referential integrity. Appendix A describes support for the two most common
paradigms, based on reference and containment relationships. Only one type of
deletion is supported; a different operation should be used for archiving an object.
This interface can support many paradigms for storage management, e.g. garbage
collection and reference counts. Since storage management is implementation-
dependent, its interface does not belong in the generalized life cycle interfaces.

• Copying: Appendix A describes support for shallow and deep copy, and referential
integrity. A scheme based on reference and containment relationships defines
scopes for operations such as copy. The concept of an factory finder is used for
object location. This paradigm for copying, deleting, and moving objects works
regardless of an object’s ORB, persistent storage mechanism, and implementation.
This design is extensible because objects participate in the traversal algorithm, and
the relationship service presented in the appendix supports the definition of new
kinds of relationships with different behavior.

• Equivalence: There was no need for an object equivalence service or global object
identifiers in the design of the Life Cycle Service to support real world applications
or other object services.

2.Object Services Architecture, Document Number 92-8-4, Object Managment Group, Framingham, MA,
1992.

6-10 CORBAservices: Common Object Services Specification

6

6.2 The CosLifeCycle Module

Client code accesses the basic life cycle functionality via the CosLifeCycle module.
This module defines the FactoryFinder, LifeCycleObject and GenericFactory
interfaces and describes the operations of these interfaces in detail.

#include “Naming.idl”

module CosLifeCycle{

typedef Naming::Name Key;
typedef Object Factory;
typedef sequence <Factory> Factories;
typedef struct NVP {

Naming::Istring name;
any value;

} NameValuePair;
typedef sequence <NameValuePair> Criteria;

exception NoFactory {
Key search_key;

};
exception NotCopyable { string reason; };
exception NotMovable { string reason; };
exception NotRemovable { string reason; };
exception InvalidCriteria{

Criteria invalid_criteria;
};
exception CannotMeetCriteria {

Criteria unmet_criteria;
};

Figure6-9 The CosLifeCycle Module

Life Cycle Service: v1.0 The CosLifeCycle Module November 1996 6-11

6

6.2.1 The LifeCycleObject Interface

The LifeCycleObject interface defines copy, move and remove operations. Objects
participate in the life cycle service by supporting this interface.

copy

The copy operation makes a copy of the object. The copy is located in the scope of
the factory finder passed as the first parameter. The copy operation returns an object
reference to the new object. The new object is initialized from the existing object.

The first parameter, there, may be a nil object reference. If passed a nil object
reference, the target object can determine the location or fail with the NoFactory
exception.

interface FactoryFinder {
Factories find_factories(in Key factory_key)

raises(NoFactory);
};

interface LifeCycleObject {
LifeCycleObject copy(in FactoryFinder there,

in Criteria the_criteria)
raises(NoFactory, NotCopyable, InvalidCriteria,

 CannotMeetCriteria);
void move(in FactoryFinder there,

in Criteria the_criteria)
raises(NoFactory, NotMovable, InvalidCriteria,

 CannotMeetCriteria);
void remove()

raises(NotRemovable);
};

interface GenericFactory {
boolean supports(in Key k);
Object create_object(

in Key k,
in Criteria the_criteria)

raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

};
};

LifeCycleObject copy(in FactoryFinder there,
in Criteria the_criteria)

raises(NoFactory, NotCopyable, InvalidCriteria,
CannotMeetCriteria);

Figure6-9 The CosLifeCycle Module

Life Cycle Service: v1.0 The CosLifeCycle Module November 1996 6-13

6

remove

Remove instructs the object to cease to exist. The object reference for the target is no
longer valid after remove successfully completes. The client is not responsible for
cleaning up any resources the object uses. An implementation that refuses to remove
itself should raise the NotRemovable exception. In addition to this exception,
implementations may raise standard CORBA exceptions.

6.2.2 The FactoryFinder Interface

Factory finders support an operation, find_factories, which returns a sequence of
factories. Clients pass factory finders to the move and copy operations, which typically
invoke this operation to find a factory to interact with. (This is described in detail in
section 6.4.)

The factory finder interface represents the minimal functionality supported by all
factory finders.

find_factories

The find_factories operation is passed a key used to identify the desired factory.
The key is a name, as defined by the naming service. More than one factory may
match the key. As such, the factory finder returns a sequence of factories. If there are
no matches, the NoFactory exception is raised.

The scope of the key is the factory finder. The factory finder assigns no semantics to
the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the returned factories or objects they create.

void remove()
raises(NotRemovable);

Factories find_factories(in Key factory_key)
raises(NoFactory);

6-14 CORBAservices: Common Object Services Specification

6

It is beyond the scope of this specification to standardize the key space. The space of
keys is established by convention in particular environments. The kind field3 of the key
is useful for partitioning the key space. Suggested values for the id and kind fields
are given in Table 6-1.

6.2.3 The GenericFactory Interface

In many environments, management of a set of resources that are allocated to objects
at creation time is required. This needs to be done in a coordinated fashion for all types
of objects. The Life Cycle Service provides a framework for this which is intended to
be usable in a variety of administrative environments. However, the differing
environments will administer a variety of resources and it is beyond the scope of this
framework to identify all the possible types of resource.

While there is no standard interface for a factory, a GenericFactory interface is
defined. The GenericFactory interface defines a generic creation operation,
create_object. By defining a generic interface for creation, a creation service can
be implemented. This is particularly useful in environments where administering a set
of resources is important.

Such a generic factory can implement resource policies and represent multiple
locations. In administered environments, object specific factories, such as the
document factory described in section , may delegate the creation process to the
generic factory. This is described in detail in section 6.3.2.

The job of the generic factory is to match the creation criteria specified by clients of
the GenericFactory interface with offers made on behalf of implementation specific
factories.

3.See the naming service specification.

1. An example of an implementation equivalence class is a set of object implementations that have compatible externalized
forms.

Table 6-1 Suggested conventions for factory finder keys.

id field kind field meaning

name of object
interface

“object interface” Find factories that create objects supporting
the named interface.

name of equivalent
implementations

“implementation
equivalence class”

Find factories that create objects with
implementations in a named equivalence
class of implementations.1

name of object
implementation

“object
implementation”

Find factories that create objects of a
particular implementation.

name of factory
interface

“factory interface” Find factories supporting the named factory
interface.

Life Cycle Service: v1.0 The CosLifeCycle Module November 1996 6-15

6

Figure 6-10 illustrates the structure of a creation service.

Figure6-10 The Life Cycle service provides a generic creation capability. Ultimately,
implementation specific creation code is invoked by the creation service. The
implementation specific code also supports the GenericFactory interface.

The client of the GenericFactory interface invokes the create_object operation
and can express criteria for creation.

Ultimately, this request will be passed to an implementation specific factory which
supports the GenericFactory interface. To get there, the request may travel through a
number of generic factories. However, all of this is transparent to the client.

create_object

The create_object operation is passed a key used to identify the desired object to
be created. The key is a name, as defined by the Naming Service.

Object create_object(
in Key k,
in Criteria the_criteria)

raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

GenericFactory

GenericFactory

creation service

implementation
specific code

resources

GenericFactory

implementation
specific code

resources

6-16 CORBAservices: Common Object Services Specification

6

The scope of the key is the generic factory. The generic factory assigns no semantics
to the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the created object.

It is beyond the scope of this specification to standardize the key space. The space of
keys is established by convention in particular environments. The kind field4 of the key
is useful for partitioning the key space. Suggested values for the id and kind fields
are given in Table 6-2.

The second parameter, the_criteria, allows for a number of optional parameters
to be passed. Criteria are explained in detail in section 6.2.4

If the generic factory cannot create an object specified by the key, then NoFactory is
raised.

If the target does not understand the criteria, the InvalidCriteria exception is
raised. If the target understands the criteria but cannot satisfy the criteria, the
CannotMeetCriteria exception is raised.

supports

The supports operation returns true if the generic factory can create an object,
given the key. Otherwise false is returned.

4.See the naming service specification.

1. An example of an implementation equivalence class is a set of object implementations that have compatible externalized
forms

Table 6-2 Suggested conventions for generic factory keys.

id field kind field meaning

name of object
interface

“object interface” Create an object that supports the named
interface.

name of equivalent
implementations

“implementation
equivalence class”

Create an object whose implementation is in
a named equivalence class of
implementations.1

name of object
implementation

“object
implementation”

Create objects of a particular
implementation.

boolean supports(in Key k);

6-18 CORBAservices: Common Object Services Specification

6

“initialization”

The “initialization” criterion is a sequence of name-value pairs which is intended to
contain application specific initialization values. Typically, the generic factory will pay
no attention to the initialization criterion and simply passes it on to application specific
factory code.

“filter”

The filter criterion is a constraint expression which provides the client with a powerful
way of expressing its requirements on creation. The generic factory will use the
constraint expression to make decisions about the allocation of particular resources.
For example, a client could give a constraint “operating system” != “windows nt”.

These constraints are expressed in some Constraint Language. A constraint language is
suggested in Appendix B.

Filters are potentially complex and InvalidCriteria will be raised if the filter is
too complex for the factory or is syntactically incorrect.

“logical location”

The “logical location” criterion allows a client to express where a
created/copied/migrated object is logically created. For example, in PCTE an object is
always in a relationship with another object. In such an environment, the logical
location would specify another object and a relationship.

“preferences”

The “preferences” criterion allows the client to influence the policies which the generic
factory uses to make decisions. For example, a generic factory might arbitrarily choose
a machine from a set of machines. Using the preferences criterion, a client could
express its preference for a particular machine. Policies and preferences are described
in more detail in Appendix B.

6.3 Implementing Factories

As defined under Client’s Model of Creation on page 4, any object that creates another
object in response to some request is called a factory. Clients depend only on the
definitions in that section.

The client’s model of object life cycle has intentionally been defined abstractly. This
allows a wide variety of implementation strategies.

Factories are not special objects. They have well-defined IDL interfaces and
implementations in programming languages. Defining factory interfaces and
implementing them are a normal part of application development.

Ultimately, the creation process requires implementation dependent code that
assembles resources for the storage and execution of an object. The act of creating an
object requires assembling and initializing all of the resources required to support the
execution and storage of the object. The resources typically include:

Life Cycle Service: v1.0 Implementing Factories November 1996 6-19

6

• the allocation of one or more BOA object references, and
• resources related to persistence storage.

6.3.1 Minimal Factories

Figure 6-11 illustrates a minimal implementation of a factory that assembles resources
in a single factory object.

Figure6-11 Factories assemble resources for the execution of an object. A minimal
implementation achieves this with a single factory implementation.

6.3.2 Administered Factories

Factories can delegate the creation process to a generic factory that administers a set of
resources. The generic factory may apply policies to all creation requests.

Eventually such a generic creation service, needs to communicate with implementation
specific code that actually assembles the resources for the object. Figure 6-12
illustrates an object specific factory, such as the document factory of Figure 6-5 that
delegates the creation problem to the generic creation service. The object-specific
factory effectively adds a statically typed wrapper around the generic factory.

Object specific factory interface

factory

resources

specific code

6-20 CORBAservices: Common Object Services Specification

6

.

Figure6-12 In an administered environment, factory implementations can delegate the creation
problem to a generic factory. The generic factory can apply resource allocation
policies. Ultimately the creation service communicates with implementation
specific code that assembles resources for the object.

Object specific factory interface

GenericFactory

GenericFactory

life cycle service

factory
specific code

implementation
specific factory

Factory client

resources

GenericFactory

implementation
specific factory

resources

Life Cycle Service: v1.0 Target’s Use of Factories and Factory Finders November 1996 6-21

6

6.4 Target’s Use of Factories and Factory Finders

Figure6-13 The copy and move operations are passed a FactoryFinder to represent “there.”
The implementation of the target uses the FactoryFinder to find a factory object
for creation over there. The protocol between the object and the factory is private.
They can communicate and transfer state according to any implementation-defined
protocol.

A client passes a factory finder as a parameter to a copy or move request.

Clients do not generally understand the implementation constraints of the object being
copied. Clients cannot express what the target object needs in order to copy itself to
the new location.

Target object implementations, on the other hand, put constraints on factories based on
implementation concerns. It is unlikely that target implementation code is interested in
further constraining location.

To find an appropriate factory, the target object implementation may use the factory
finder with its minimal interface defined in section 6.2.2 or it may attempt to narrow
the factory finder to a more sophisticated finding service with more expressive power.
The target object implementation can always depend on the existence of the minimal
interface.

Once the target object implementation finds a factory, it communicates with the
factory using a private, implementation-defined, interface.

6.5 Summary of Life Cycle Service

The problem of distributed object life cycle is the problem of

• Creating an object

• Deleting an object

Document

FactoryFinder

Private

THEREHERE

Factory

6-22 CORBAservices: Common Object Services Specification

6

• Moving and copying an object

• Operating on a graph of distributed objects.

The client’s model of object life cycle is based on factories and target objects
supporting the LifeCycleObject interface. Factories are objects that create other
objects. The LifeCycleObject interface defines operations to delete an object, to move
an object and to copy an object.

A GenericFactory interface is defined. The generic factory interface is sufficient to
create objects of different types. By defining a GenericFactory interface,
implementations that administer resources are enabled.

6.5.1 Summary of Life Cycle Service Structure

The Life Cycle Service specification consists of these interfaces:

• LifeCycleObject

• FactoryFinder

• GenericFactory

• Interfaces described in Appendix A, an addendum to the Life Cycle Service

Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-23

6

 Appendix A Addendum to Life Cycle Service: Compound Life Cycle
Specification

This appendix contains the specification for the compound life cycle component of the
Life Cycle Service .The compound life cycle specification depends on the Life Cycle
Service for the definition of the client view of Life Cycle operations. Moreover, it
extends the Life Cycle Service to support compound life cycle operations on graphs of
related objects. In addition, the compound life cycle specification depends on the
Relationship Service for the definition of object graphs.

The Life Cycle Service specification describes a client’s view of object life cycle. It
describes how a client can create, copy, move and remove objects in a distributed
object system. To create objects, clients find factory objects and issue create requests
on factories. To copy, move and remove objects, clients issue requests on target
objects supporting the LifeCycleObject interface.

If the target object represents a simple object, that is an object that is not part of a
graph of related objects, the target provides an implementation for each of the
operations in the LifeCycleObject interface.

If, on the other hand, the target object uses the Relationship Service for representing
relationships with other objects, additional services are available to implement the
compound life cycle operations. The specification in this appendix describes those
services.

 A.1 Key Features

The compound life cycle specification:

• Addresses the issues of copying, moving and removing objects that are related to
other objects. Depending on the semantics of the relationships, these life cycle
operations are applied to:

• the object, to the relationship and to the related objects

• the object and to the relationship

• the object

• Coordinates compound life cycle operations on graphs of related objects, thus
relieving object developers from implementing compound operations.

• Illustrates a general model for applying compound operations to graphs of related
objects. The Externalization Service also illustrates the model.

 A.2 Service Structure

The specification in this appendix defines a service that applies a compound life cycle
operation to a graph of related objects, given a starting node. Compound operations
traverse a graph of related objects and apply the operation to the relevant nodes, roles
and relationships of the graph. The service supports the
CosCompoundLifeCycle::Operations interface. Implementations of the service depend
on the CosCompoundLifeCycle::Node , CosCompoundLifeCycle::Role and
CosCompoundLifeCycle::Relationship interfaces which are subtypes of the Node , Role

6-24 CORBAservices: Common Object Services Specification

6

and Relationship interfaces defined in the Relationship Service. The
CosCompoundLifeCycle::Node , CosCompoundLifeCycle::Role and
CosCompoundLifeCycle::Relationship interfaces add operations to copy, remove and
move nodes, roles and relationships.

The Relationship Service defines interfaces for containment and reference relationships
and their roles. This appendix defines interfaces that inherit those interfaces and the
compound life cycle interfaces.

 A.3 Interface Overview

Table 6-4 and Table 6-5 summarize the interfaces defined in the
CosCompoundLifeCycle module. The CosCompoundLifeCycle module is described in
detail in sectionSection A.4.2.

Table 6-4 Interfaces defined in the CosCompoundLifeCycle module for initiating compound life
cycle operations.

Interface Purpose

Operations Defines compound life cycle operations on graphs of related
objects.

OperationsFactory Defines an operation to create an object that supports the
Operations interface.

Table 6-5 Interfaces defined in the CosCompoundLifeCycle module that are used by
implementations of compound life cycle operations

Interface Inherits Purpose

Node CosGraphs::Node Defines life cycle
operations on nodes in
graphs of related objects.

Relationship CosRelationships::Relationship Defines life cycle
operations on
relationships.

Role CosGraphs::Role Defines life cycle
operations on roles.

PropagationCriteriaFactory Creates an object that
supports the
CosGraphs::TraversalCrit
eria interface that uses
relationship propagation
values.

Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-25

6

Table 6-6 and Table 6-7 summarize the interfaces that combine the specific
relationships defined by the Relationship Service and the life cycle interfaces defined
in this appendix.

 A.4 Compound Life Cycle Operations

The Life Cycle specification describes a client’s view of object life cycle. It describes
how a client can create, copy, move and remove objects in a distributed object system.
To create objects, clients find factory objects and issue create requests on factories. To
copy, move and remove objects, clients issue requests on target objects supporting the
LifeCycleObject interface.

If the target object represents a simple object, that is an object that is not part of a
graph of related objects, the target provides an implementation for each of the
operations in the LifeCycleObject interface.

Table 6-6 Interfaces defined in the CosLifeCycleContainment module.

Interface Inherits Purpose

Relationship CosContainment::Containment
and
CosCompoundLifeCycle::Relationship

Combines both
interfaces.
No additional
operations are defined.

ContainsRole CosContainment::ContainsRole
and
CosCompoundLifeCycle::Role

Combines both
interfaces.
No additional
operations are defined.

ContainedInRole CosContainment::ContainedInRole
and
CosCompoundLifeCycle::Role

Combines both
interfaces.
No additional
operations are defined.

Table 6-7 Interfaces defined in the CosLifeCycleReference module.

Interface Inherits Purpose

Relationship CosContainment::Reference
and
CosCompoundLifeCycle::Relationship

Combines both
interfaces.
No additional
operations are defined.

ReferencesRole CosContainment::ReferencesRole
and
CosCompoundLifeCycle::Role

Combines both
interfaces.
No additional
operations are defined.

ReferencedByRole CosContainment::ReferencedByRole
and
CosCompoundLifeCycle::Role

Combines both
interfaces.
No additional
operations are defined.

6-26 CORBAservices: Common Object Services Specification

6

If the target participates as a node in a graph of related objects, the target can delegate
the life cycle operation to a service that implements the compound life cycle operation.
In particular, the target simply creates an object that supports the
CosCompoundLifeCycle::Operations interface and issues the corresponding life cycle
request on it. The compound life cycle operations expect a CompoundLifeCycle::Node
object reference as a starting node. The target simply passes its
CompoundLifeCycle::Node object reference as the starting node.

When the life cycle object has completed issuing compound life cycle requests, it
simply issues the destroy request to destroy the compound operation.

Figure 6-14 illustrates the target’s delegation of the life cycle request to compound
operation.

Figure 6-14 A life cycle object that is part of a graph of related objects delegates the orderly
operation on the graph to an object that implements the compound life cycle
operation.

 A.4.1 Applying the Copy Operation to the Example

We now use the example in the Relationship Service Specification (Figure 9-3) to
illustrate applying the copy operation to a graph. Figure 6-15 illustrates the graph and the
compound operation prior to applying the copy operation. Recall that the folder contains
the document; the document is contained in the folder. The document contains the
figure; the figure is contained in the document. The document contains the logo and
the logo is contained in the document. On the other hand, the document references the
book; the book is referenced by the document. Finally, the figure references the logo;
the logo is referenced by the figure.

CompoundLifeCycle::Node
compound operations

target

CosCompoundLifeCycle::Operations

CosLifeCycle::LifeCycleObject

Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-27

6

Figure6-15 Prior to applying copy to the graph.

In this example, the copy is performed in two passes. The first pass creates a list
representation of the relevant edges of the graph. The second pass takes the list as
input, copies the relevant nodes and roles, then creates all the necessary links by
copying the relevant relationships.

A compound copy request is initiated by issuing a LifeCycleObject::copy request on
the folder. Since the folder participates in a graph of related objects, it creates an
object supporting the CosCompoundLifeCycle::Operations interface (the Operations
object). Then the folder issues a CosCompoundLifeCycle::Operations::copy request
on the Operations object, passing in its own CosCompoundLifeCycle::Node object
reference as the starting node. The copy operation will copy the graph of related
objects and return an object reference for the copy of the folder object.

The remainder of this section provides a description of how the Operations object
might implement the copy operation.

First Pass of the Compound Copy Operation

The first pass consists of creating a list representation of the relevant edges of the
graph. The Operations object uses an object supporting the CosGraphs::Traversal
interface to do most of the work.

The Operations object creates an object supporting the CosGraphs::TraversalCriteria
interface by calling CosCompoundLifeCycle::PropagationCriteriaFactory::create.

compound
operation

figure

logo

folder

book

document

deep

shallow

deep
shallow

none

shallow

noneshallow

shallow

6-28 CORBAservices: Common Object Services Specification

6

The Operations object then creates a CosGraphs::Traversal object by calling
CosGraphs::TraversalFactory::create_traversal_on, passing in the object
supporting the CosGraphs::TraversalCriteria interface. Calls on the
CosGraphs::Traversal object yield an unordered list of
CosGraphs::Traversal::ScopedEdges containing the following information.

(folder, ContainsRole, Containment, ContainedInRole, document)

(document, ReferencesRole, Reference, ReferencedByRole, book)

(document, ContainedInRole, Containment, ContainsRole, folder)

(document, ContainsRole, Containment, ContainedInRole, figure)

(document, ContainsRole, Containment, ContainedInRole, logo)
(figure, ReferencesRole, Reference, ReferencedByRole, logo)

(figure, ContainedInRole, Containment, ContainsRole, document)

(logo, ContainedInRole, Containment, ContainsRole, document)

This list will be referred to as the OriginalEdgeList.

Since the propagation value for copy from the document to the book is shallow, the
traversal did not visit the book. As such, the edge:

(book, ReferencedByRole, Reference, References, document)

is not included. Although the traversal did visit the logo, the edge

(logo, ReferencedByRole, Reference, ReferencesRole, figure)

is not included because the propagation value for copy from the logo to the figure is
none.

For more detailed information regarding the output of the CosGraphs::Traversal
object with respect to the use of propagation semantics, see section 9.4.3 of the
Relationship Service.

Second Pass of the Compound Copy Operation

The second pass copies all the relevant nodes and then relates them by copying the
relevant relationships.

First, the set of nodes to be copied must be determined. This consists of all the distinct
nodes in the left column of the OriginalEdgeList . Since a node may be involved in
multiple edges, it may appear multiple times in the list; it should only be copied once.
Each node in this set is copied by issuing a
CosCompoundLifeCycle::Node::copy_node request. This request will cause the node
and all of its roles to be copied; the new node and its roles will be returned.

• For each returned role of the copied node, an entry is made in a table of new
roles. Each entry consists of:

• The role object is the data and

• The node’s CosGraphs::Traversal::TraversalScopedId and the role’s
CORBA::InterfaceDef together serve as a key.

Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-29

6

The final step is to create all the relationships for the copied graph. All of the distinct
relationships in the center column of the OriginalEdgeList need to be copied. Although
a relationship may appear multiple times in the list, it should only be copied once.
Each relationship is copied by issuing a
CosCompoundLifeCycle::Relationship::copy_relationship request. The
arguments to CosCompoundLifeCycle::Relationship::copy_relationship include
the list of roles to be included in the new relationship. Some of these roles will be
copies that were created as a result of processing deep propagation values; others will
be roles in the original graph.

Thus, copy each unique relationship in the OriginalEdgeList, using NamedRoles as
follows:

For each role in an entry in the OriginalEdgeList, make a role key using the node’s
TraversalScopedId and the role’s CORBA::InterfaceDef to search the table of new
roles.

a. If the role was copied, the key will find the role’s copy. The role’s RoleName is
obtained from the entry in the OriginalEdgeList. The role’s copy and the
RoleName are combined to form a CosGraphs::NamedRole which will then be
included in the list of CosGraphs::NamedRoles passed to the
CosCompoundLifeCycle::Relationship::copy_relationship method.

b. If no copy is found, the original CosGraphs::NamedRole is used instead.

Once all the Relationships have been copied, the
CosCompoundLifeCycle::Operations::copy method is done.

Figure 6-16 illustrates the result of applying copy to the graph, starting at the folder.

Figure6-16 The result of applying copy to the graph, starting at the folder.

When the copy operation propagates to a node because of a deep propagation value,
other shallow propagation values to that node are promoted. That is, they are processed
as if they were deep; relationships are formed with the copied node, not with the

figure

logo

folder

document

new

new

new

new

book

figure

logo

document

folder

6-30 CORBAservices: Common Object Services Specification

6

original. This happened in the example; the shallow propagation value from the figure
to the logo was promoted to deep because the logo was copied. As such, the new figure
references the new logo, not the original logo.

 A.4.2 The CosCompoundLifeCycle Module

The CosCompoundLifeCycle module defines

• The Operations interface for initiating compound life cycle operations on graphs
of related objects,

• OperationsFactory interface for creating compound operations,

• The Node, Role, Relationship and PropagationCriteriaFactory interfaces for use
by implementations of compound life cycle operations.

The CosCompoundLifeCycle module is given in Figure 6-17. Detailed descriptions of
the interfaces follow.

#include <LifeCycle.idl>
#include <Relationships.idl>
#include <Graphs.idl>

module CosCompoundLifeCycle {
interface OperationsFactory;
interface Operations;
interface Node;
interface Role;
interface Relationship;
interface PropagationCriteriaFactory;

enum Operation {copy, move, remove};

struct RelationshipHandle {
Relationship the_relationship;
::CosObjectIdentity::ObjectIdentifier constant_random_id;

};

interface OperationsFactory {
Operations create_compound_operations();

};

Figure6-17 The CosCompoundLifeCycle Module

Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-31

6

interface Operations {
Node copy (

in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void move (
in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void remove (in Node starting_node)
raises (::CosLifeCycle::NotRemovable);

void destroy();
};

interface Node : ::CosGraphs::Node {
exception NotLifeCycleObject {};
void copy_node (in ::CosLifeCycle::FactoryFinder there,

in ::CosLifeCycle::Criteria the_criteria,
out Node new_node,
out Roles roles_of_new_node)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void move_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void remove_node ()
raises (::CosLifeCycle::NotRemovable);

::CosLifeCycle::LifeCycleObject get_life_cycle_object()
raises (NotLifeCycleObject);

};

Figure6-17 The CosCompoundLifeCycle Module (Continued)

Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-33

6

 A.4.3 The OperationsFactory Interface

Creating a Compound Life Cycle Operation

The create_compound_operations operation creates an object that implements
the compound life cycle operations, that is, the factory creates and returns an object
that supports the CosCompoundLifeCycyle::Operations interface.

The Operations Interface

The Operations interface defines compound life cycle operations to copy, move and
remove objects, given a starting node in a graph.

Applying the Copy Operation to a Graph of Related Objects

The copy operation applies the copy operation to a graph of related objects. The
starting node is provided as the starting_node parameter. The copy should be
collocated with the factory finder given by the there parameter. The final parameter,
the_criteria, allows unspecified values to be passed. This is explained in the Life
Cycle specification in detail.

If a node, role or relationship in the graph refuses to be copied, the NotCopyable
exception is raised with the node, role or relationship object reference returned as a
parameter to the exception.

If appropriate factories to create a copies of the nodes and roles cannot be found, the
NoFactory exception is raised. The exception value indicates the key used to find
the factory.

In addition to the NoFactory and NotCopyable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the copied graph, NO_RESOURCES will be raised.

Operations create_compound_operations();

Node copy (
in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

6-34 CORBAservices: Common Object Services Specification

6

It is implementation dependent whether this operation is atomic.

Applying the Move Operation to a Graph of Related Objects

The move operation applies the move operation to a graph of related objects. The
starting node is provided as the starting_node parameter. The migrated graph
should be collocated with the factory finder given by the there parameter. The final
parameter, the_criteria, allows unspecified values to be passed. This is explained
in the Life Cycle specification in detail.

If a node, role or relationship in the graph refuses to be moved, the NotMovable
exception is raised with the node, role or relationship object reference returned as a
parameter to the exception.

If appropriate factories to migrate the nodes and roles cannot be found, the
NoFactory exception is raised. The exception value indicates the key used to find
the factory.

In addition to the NoFactory and NotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the migrated graph, NO_RESOURCES will be raised.

It is implementation-dependent whether this operation is atomic.

Applying the Remove Operation to a Graph of Related Objects

The remove operation applies the remove operation to a graph of related objects. The
starting node is provided as the starting_node parameter.

If a node, role or relationship in the graph refuses to be removed, the NotRemovable
exception is raised with the node, role or relationship object reference returned as a
parameter to the exception.

void move (
in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void remove (in Node starting_node)
raises (::CosLifeCycle::NotRemovable);

Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-35

6

It is implementation dependent whether this operation is atomic.

Destroying the Compound Operation

The destroy operation indicates to the compound operation that the client has
completed operating on the graph. The compound operation object is destroyed.

The Node Interface

The Node interface defines operations to copy, move and remove a node.

Copying a Node

The copy operation makes a copy of the node and its roles. The new node and roles
should be collocated with the factory finder given by the there parameter. The final
input parameter, the_criteria, allows unspecified values to be passed. This is
explained in the Life Cycle specification in detail.

The result of a copy operation is a:

• Node object reference for the new node and

• Sequence of roles

void destroy();

void copy_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria,
out Node new_node,
out Roles roles_of_new_node)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

6-36 CORBAservices: Common Object Services Specification

6

Figure 6-18 illustrates the result of a copy. A node, when it is born, is not in any
relationships with other objects. That is, the roles in the new node are “disconnected”.
It is the compound copy operation’s job to correctly establish new relationships.

Figure6-18 Copying a node returns the new object and the corresponding roles.

If the node or one of its roles refuses to be copied, the NotCopyable exception is
raised with the node or role object reference returned as a parameter to the exception.

If an appropriate factory to create a copy cannot be found, the NoFactory exception
is raised. The exception value indicates the key used to find the factory.

In addition to the NoFactory and NotCopyable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the copied node, NO_RESOURCES will be raised.

Moving a Node

The move operation transfers some or all of the node’s resources from “here” to
“there”. The move operation migrates a the node and its roles. The migrated node and
roles should be collocated with the factory finder given by the there parameter. The
final parameter, the_criteria, allows unspecified values to be passed. This is
explained in the Life Cycle specification in detail.

If the node or one of its roles refuses to be moved, the NotMovable exception is
raised with the node or role object reference returned as a parameter to the exception.

If an appropriate factory to support migration “over there” cannot be found, the
NoFactory exception is raised. The exception value indicates the key used to find
the factory.

void move_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

THEREHERE

original
document

new
document

Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-37

6

In addition to the NoFactory and NotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the migrated node, NO_RESOURCES will be raised.

Removing a Node

The remove operation removes the node and its roles.

If the node or one of its roles refuses to be removed, the NotRemovable exception is
raised with the node or role object reference returned as a parameter to the exception.

Getting the Node’s Life Cycle Object

Some nodes not only participate in the life cycle protocols for graphs of related objects
but they also support the client’s view of life cycle services. That is, the node also
supports the ::CosLifeCycle::LifeCycleObject interface described in the Life Cycle
Service specification. The get_life_cycle_object operation returns the
::CosLifeCycle::LifeCycleObject object reference for the node.

If the node does not support the ::CosLifeCycle::LifeCycleObject interface, the
NotLifeCycleObject exception is raised.

The Role Interface

The Role interface defines operations to copy and move a role. (The destroy
operation is defined by the base Relationship Service. As such, there is no need to
define a remove operation.) The Role interface also defines an operation to return the
propagation values for the copy, move and remove operations.

The implementation of a CompoundLifeCycle::Node operation can call these
operations on roles. For example, an implementation of copy on a node can call the
copy operation on the Role.

void remove_node ()
raises (::CosLifeCycle::NotRemovable);

::CosLifeCycle::LifeCycleObject get_life_cycle_object()
raises (NotLifeCycleObject);

6-38 CORBAservices: Common Object Services Specification

6

Copying a Role

The copy operation makes a copy of the role. The new role should be collocated with
the factory finder given by the there parameter. The final parameter,
the_criteria, allows unspecified values to be passed. This is explained in the Life
Cycle specification in detail.

The result of a copy operation is an object reference for the new object supporting the
Role interface.

If the role refuses to be copied, the NotCopyable exception is raised with the role
object reference returned as a parameter to the exception.

If an appropriate factory to create a copy cannot be found, the NoFactory exception
is raised. The exception value indicates the key used to find the factory.

In addition to the NoFactory and NotCopyable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the copied role, NO_RESOURCES will be raised.

Moving a Role

The move operation transfers some or all of the role’s resources. The move operation
migrates the role. The migrated role should be collocated with the factory finder given
by the there parameter. The final parameter, the_criteria, allows unspecified
values to be passed. This is explained in the Life Cycle specification in detail.

If the role refuses to be moved, the NotMovable exception is raised with the role
object reference returned as a parameter to the exception.

If an appropriate factory to support migration cannot be found, the NoFactory
exception is raised. The exception value indicates the key used to find the factory.

Role copy_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void move_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-39

6

In addition to the NoFactory and NotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the migrated role, NO_RESOURCES will be raised.

Getting a Propagation Value

The life_cycle_propagation operation returns the propagation value to the role
to_role_name for the life cycle operation op and the relationship rel. If the role
can guarantee that the propagation value is the same for all relationships in which it
participates, same_for_all is true.

The Relationship Interface

The Relationship interface defines operations to copy and move a relationship. (The
destroy operation is defined by the Relationship Service. As such, there is no need
to define a remove operation.) The Relationship interface also defines an operation to
return the propagation values for the copy, move and remove operations.

Copying the Relationship

The copy operation creates a new relationship. The new relationship should be
collocated with the factory finder given by the there parameter. The second
parameter, the_criteria, allows unspecified values to be passed. This is explained
in the Life Cycle specification in detail.

::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in RelationshipHandle rel,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

Relationship copy_relationship (
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria,
in ::CosGraphs::NamedRoles new_roles)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

6-40 CORBAservices: Common Object Services Specification

6

The values of the newly created relationship’s attributes are defined by the
implementation of this operation. However, the named_roles attribute of the newly
created relationship must match new_roles. That is, the newly created relationship
relates objects represented by new_roles parameter, not the by the original
relationship’s named roles.

The result of a copy operation is an object reference for the new object supporting the
Relationship interface.

If the relationship refuses to be copied, the NotCopyable exception is raised with the
relationship object reference returned as a parameter to the exception.

If an appropriate factory to create a copy cannot be found, the NoFactory exception
is raised. The exception value indicates the key used to find the factory.

In addition to the NoFactory and NotCopyable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the copied role, NO_RESOURCES will be raised.

Moving the Relationship

The move operation transfers some or all of the relationship’s resources. The move
operation migrates the relationship. The migrated relationship should be collocated
with the factory finder given by the there parameter. The final parameter,
the_criteria, allows unspecified values to be passed. This is explained in the Life
Cycle specification in detail.

If the relationship refuses to be moved, the NotMovable exception is raised with the
relationship object reference returned as a parameter to the exception.

If an appropriate factory to support migration cannot be found, the NoFactory
exception is raised. The exception value indicates the key used to find the factory.

In addition to the NoFactory and NotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the migrated relationship, NO_RESOURCES will be raised.

void move_relationship (
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-41

6

Getting a Propagation Value

The life_cycle_propagation operation returns the relationship’s propagation
value from the role from_role to the role to_role_name for the life cycle
operation op. If the role named by from_role_name can guarantee that the
propagation value is the same for all relationships in which it participates,
same_for_all is true.

The PropagationCriteriaFactory Interface

The CosGraphs module in the Relationship Service defines a general service for
traversing a graph of related objects. The service accepts a “call-back” object
supporting the ::CosGraphs::TraversalCriteria interface. Given a node, this object
defines which edges to emit and which nodes to visit next.

The PropgationCriteriaFactory creates a TraversalCriteria object that determines
which edges to emit and which nodes to visit based on propagation values for the
compound life cycle operations.

Create a Traversal Criteria Based on Life Cycle Propagation Values

The create operation returns a TraversalCriteria object for an operation op that
determines which edges to emit and which nodes to visit based on propagation values
for op. For a more detailed discussion see section A.4.1 of this appendix and section
9.4.2 of the Relationship specification.

 A.4.4 Specific Life Cycle Relationships

The Relationship service defines two important relationships, containment and
reference. Containment is a one-to-many relationship. A container can contain many
containees; a containee is contained by one container. Reference, on the other hand, is
a many-to-many relationship. An object can reference many objects; an object can be
referenced by many objects.

::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in ::CosRelationships::RoleName from_role_name,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

::CosGraphs::TraversalCriteria create(in Operation op);

6-42 CORBAservices: Common Object Services Specification

6

Containment is represented by a relationship with two roles: the ContainsRole, and the
ContainedInRole. Similarly, reference is represented by a relationship with two roles:
ReferencesRole and ReferencedByRole.

The compound life cycle specification adds life cycle semantics to these specific
relationships. That is, it defines propagation values for containment and reference.

 A.4.5 The CosLifeCycleContainment Module

The CosLifeCycleContainment module defines three interfaces
• the Relationship interface
• the ContainsRole interface and
• the ContainedInRole interface.

The CosLifeCycleContainment module does not define new operations. It merely
“mixes in” interfaces from the CosCompoundLifeCycle and CosContainment modules.
Although it does not add any new operations, it refines the semantics of these
attributes and operations:

#include <Containment.idl>
#include <CompoundLifeCycle.idl>

module CosLifeCycleContainment {

interface Relationship :
::CosCompoundLifeCycle::Relationship,
::CosContainment::Relationship {};

interface ContainsRole :
::CosCompoundLifeCycle::Role,
::CosContainment::ContainsRole {};

interface ContainedInRole :
::CosCompoundLifeCycle::Role,
::CosContainment::ContainedInRole {};

};

Figure6-19 The CosLifeCycleContainment module

RelationshipFactory
attribute value

relationship_type CosLifeCycleContainment::Relationship

degree 2

named_role_types “ContainsRole”,CosLifeCycleContainment::ContainsR
ole;
“ContainedInRole”,CosLifeCycleContainment::Contai
nedInRole

Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-43

6

The CosRelationships::RelationshipFactory::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not CosLifeCycleContainment::ContainsRole and
CosLifeCycleContainment::ContainedInRole. It will raise
MaxCardinalityExceeded if the CosLifeCycleContainment::ContainedInRole is
already participating in a relationship.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosCompoundLifeCycle::Node interface. The
CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosLifeCycleContainment::Relationship interface.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosCompoundLIfeCycle::Node interface. The
CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosLifeCycleContainment::Relationship interface. The
CosRelationships::RoleFactory::link operation will raise
MaxCardinalityExceeded if it is already participating in a containment
relationship.

RoleFactory attribute for
ContainsRole value

role_type CosLifeCycleContainment::ContainsRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

RoleFactory attribute for
ContainedInRole value

role_type CosLifeCycleContainment::ContainedInRole

maximum_cardinality 1

minimum_cardinality 1

related_object_types CosCompoundLifeCycle::Node

6-44 CORBAservices: Common Object Services Specification

6

The CosLifeCycleContainment::ContainsRole::life_cycle_propagation
operation returns the following:

The CosLifeCycleContainment::ContainedInRole::life_cycle_propagation
operation returns the following::

 A.4.6 The CosLifeCycleReference Module

The CosLifeCycleReference module defines three interfaces
• the Relationship interface,
• the ReferencesRole interface and
• the ReferencedByRole interface.

operation ContainsRole to ContainedInRole

copy deep

move deep

remove deep

operation ContainedInRole to ContainsRole

copy shallow

move shallow

remove shallow

#include <Reference.idl>
#include <CompoundLifeCycle.idl>

module CosLifeCycleReference {

interface Relationship :
::CosCompoundLifeCycle::Relationship,
::CosReference::Relationship {};

interface ReferencesRole :
::CosCompoundLifeCycle::Role,
::CosReference::ReferencesRole {};

interface ReferencedByRole :
::CosCompoundLifeCycle::Role,
::CosReference::ReferencedByRole {};

};

Figure6-20 The CosLifeCycleReference module

Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-45

6

The CosLifeCycleReference module does not define new operations. It merely “mixes
in” interfaces from the CosCompoundLifeCycle and CosReference modules. Although
it does not add any new operations, it refines the semantics of these attributes and
operations:

The CosRelationships::RelationshipFactory::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not CosReference::ReferencesRole and
CosReference::ReferencedByRole.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosCompoundLifeCycle::Node interface. The
CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosLifeCycleReference::Relationship interface.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosCompoundLifeCycle::Node interface. The

RelationshipFactory
attribute value

relationship_type CosLifeCycleReference::Relationship

degree 2

named_role_types “ReferencesRole”,CosLifeCycleReference::Reference
sRole;
“ReferencedByRole”,CosLifeCycleReference::Referen
cedByRole

RoleFactory attribute for
ReferencesRole value

role_type CosLifeCycleReference::ReferencesRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

RoleFactory attribute for
ReferencedByRole value

role_type CosLifeCycleReference::ReferencedByRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

6-46 CORBAservices: Common Object Services Specification

6

CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosLifeCycleRelationship::Relationship interface.

The CosLifeCycleReference::ReferencesRole::life_cycle_propagation
operation returns the following:

The CosLifeCycleReference::ReferencedByRole::life_cycle_propagation
operation returns the following::

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosCompoundLifeCycle::Node interface.
The CosRelationships::RelationshipFactory::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not CosLifeCycleReference::ReferencesRole and
CosLifeCycleReference::ReferencedByRole.

 A.5 References

1. James Rumbaugh, “Controlling Propagation of Operations using Attributes on
Relations.” OOPSLA 1988 Proceedings, pg. 285-296

2. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.

operation ReferencesRole to ReferencedByRole

copy shallow

move shallow

remove shallow

operation ReferencedByRole to ReferencesRole

copy none

move shallow

remove shallow

Filters Summary of Life Cycle Service November 1996 6-47

6

 Appendix B Filters

Note – Appendix B is not part of the Life Cycle Services specification. It sketches a
mechanism for expressing filters. This appendix is included to provided an example of
how a filter might be provided.

A factory represents a scope of resource allocation, which is the set of resources
available to the factory. Whenever it receives a creation request, a factory will allocate
resources according to any policies which are in operation.

Clearly, by choosing a particular factory upon which to issue a create request, a client
is exerting some control over the allocation of resources. Therefore, a client can limit
the scope of resource allocation, by issuing the request on a different factory which
represents a smaller set of resources.

However, there are two problems with this. Firstly, the granularity of resources may be
much smaller than the granularity represented by the factories in a system. For
example, there are unlikely to be factories which represent individual disk segments.

Secondly, the client may wish to rule out the use of particular resources within a scope,
but avoid having a general reduction in scope. For example, the client might not be
concerned with which machine within a LAN an object is created on, providing it is
not on machine X.

Both of these needs can be addressed by providing a filter. In the first case, the filter is
relatively simple; it will simply limit the scope of resource allocation. In the second
case, the filter will need to be more sophisticated.

This appendix describes one way of providing filters using properties and constraint
expressions. These concepts appear in the development of Trading in the
ISO/IEC/CCITT Open Distributed Processing standards. Service providers register
their service with the Trader and use properties to describe the service offer. Potential
clients may then use a constraint expressions to describe the requirements which
service offers must satisfy.

Similarly, the life cycle service may define a number of properties to represent the
different kinds of resources available within in a system and clients may use constraint
expressions to place the restrictions upon the use of those resources.

Note – The Object Services Architecture identifies an Object Properties Service which
enables an object to have a set of arbitrary named values associated with it. These are
very similar to the concept of properties as used in Trading and in this appendix.

6-48 CORBAservices: Common Object Services Specification

6

 B.1 Resources as Properties

Resource properties are application and generic factory implementation dependent and
it is beyond the scope of this specification to identify standard properties which all
generic factory implementations will recognize. The properties described in this
appendix are given as examples only. Table 6-8 gives some examples of properties that
might be supported by a generic factory.

 B.2 Constraint Expressions

Constraints are expressed in a Constraint Language which provides a set of operators
which allow arbitrarily complex expressions involving properties and potential values
to be specified. A property lists satisfies a constraint if the constraint expression is true
when evaluated with respect to the property list.

Constraint expressions are very flexible. For example, if a client has an object
executing on a machine called ‘Host1’ and wishes to create another object which is not
on the same machine, the client can specify the constraint “Host != ‘Host1’”.

The constraint expression described here works with properties for which the value can
be a string, a number, or a set of values.

The constraint language consists of:

• comparative functions: ==, !=, >, >=, <, <=, in
• constructors: and, or, not
• property names
• numeric and string constants
• mathematical operators: +, -, *, /
• grouping operators: (,), [,]

The following precedence relations hold in the absence of parentheses, in the order of
lowest to highest:

• + and -
• * and /
• or
• and
• not

The comparative operator in checks for the inclusion of a particular string constant in
the list which is the value of a property.

Table 6-8 Examples of properties supported by a generic factory

Property Name Meaning

Host Host name of the machine

Architecture Machine architecture, e.g. “intel”, “sparc”

OSArchitecture Operating system architecture e.g. “solaris”, “hpux”

Filters Summary of Life Cycle Service November 1996 6-49

6

 B.3 BNF for Constraint Expressions

<ConstraintExpr> := [<Expr>]

<Expr> := <Expr> ”or” <Expr>

| <Expr> ”and” <Expr>

| ”not” <Expr>

| ”(” <Expr> ”)”

| <SetExpr> <SetOp> <SetExpr>

| <StrExpr> <StrOp> <StrExpr>

| <NumExpr> <NumOp> <NumExpr>

| <NumExpr> ”in” <SetExpr>

| <StrExpr> ”in” <SetExpr>

<NumOp> := ”==” | ”!=” | ”<” | ”<=” | ”>” | ”>=”

<StrOp> := ”==” | ”!=”

<SetOp> := ”==” | ”!=”

<NumExpr> := <NumTerm>

| <NumExpr> ”+” <NumTerm>

| <NumExpr> ”-” <NumTerm>

<NumTerm> := <NumFactor>

| <NumTerm> ”*” <NumFactor>

| <NumTerm> ”/” <NumFactor>

<NumFactor> := <Identifier>

| <Number>

| ”(” <NumExpr> ”)”

| ”-” <NumFactor>

<StrExpr> := <StrTerm>

| <StrExpr> ”+” <StrTerm>

<StrTerm> := <Identifier>

| <String>

| ”(” <StrExpr> ”)”

<SetExpr> := <SetTerm>

| <SetExpr> ”+” <SetTerm>

<SetTerm> := <Identifier>

| <Set>

| ”(” <SetExpr> ”)”

<Identifier> := <Word>

6-50 CORBAservices: Common Object Services Specification

6

<Number> := <Integer>

| <Float>

<Integer> := { <Digit> }+

<Float> := <Mantissa> [<Sign>] [<Exponent>]

<Mantissa> := <Integer> [”.” [<Integer>]]

| ”.” <Integer>

<Sign> := ”-”

| ”+”

<Exponent> := ”e” <Integer>

| ”E” <Integer>

<Word> := <Letter> { <AlphaNum> }*

<AlphaNum> := <Letter>

| <Digit>

| ”_”

<String> := ”’” { <Char> }* ”’”

<Char> := <Letter>

| <Digit>

| <Other>

<Set> := ”{” <Elements> ”}”

<Elements> := [<Element> { <Sp>+ <Element> }*]

<Element> := <Number>

| <Word>

| <String>

<Letter> := a | b | c | d | e | f | g | h | i | j | k

| l | m | n | o | p | q | r | s | t | u | v

| w | x | y | z | A | B | C | D | E | F | G

| H | I | J | K | L | M | N | O | P | Q | R

| S | T | U | V | W | X | Y | Z

<Digit> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<Other> := <Sp> | ~ | ! | @ | # | $ | % | ̂ | & | * | (

|) | - | _ | = | + | [| { |] | } | ; | :

| “ | \ | | | , | < | . | > | / | ?

<Sp> := ” ”

Administration Summary of Life Cycle Service November 1996 6-51

6

 Appendix C Administration

Note – Appendix C is not part of the Life Cycle Services specification. This
description is included as a suggested way of administering generic factories.

The specification for the life cycle service includes the GenericFactory interface.
There will be at least two styles of object which support that interface:

• implementation specific factories that actually assemble the resources for a new
object, and

• generic factories which pass requests on to either implementation specific factories
or other generic factories.

By configuring generic factories and implementation specific factories into a graph, a
creation service can be built which administers the allocation of a large number of
resources and can use them to create a wide variety of objects.

To ensure that the creation service is scalable, it is essential that the principle of
federation is adopted – each component retains its autonomy rather than becoming
subordinate to another.

Whenever the creation service receives a creation request, the request will need to
traverse the graph until it reaches an implementation specific factory which can satisfy
the request. As the request traverses the graph, each non-terminal node in the graph
(i.e. the generic factories) will decide which link the request will traverse next.
Decisions will be based upon information about each available link, any policies in
force at that node and, of course, the actual request.

Clearly, the configuration and policies of such a creation service will need to be
administered. However, the specification does not include the specification of an
administration interface. This is because the principle of federation is not only
important to the life cycle service. It will be essential to a number of other services,
notably trading, and the OMG plans to address the issue of federation for all object
services, rather than making a premature specification addressing the needs of just one
service.

The remainder of this appendix describes the principle of federation in more detail,
outlines the use of policies and preferences to support federation, and then concludes
with a suggestion for how an administration interface might look.

 C.1 Federation

Federation is essential in large-scale distributed systems where the existence of
centralized ownership and universal control cannot be assumed. In these systems the
only way to achieve cooperation between autonomous systems without creating a
hierarchical structure is to use federation. Federation is also beneficial to smaller
systems which can exploit the high degree of flexibility which federation provides.

6-52 CORBAservices: Common Object Services Specification

6

Federation differs from the more conventional approach of adopting a strictly
hierarchical organization in a number of ways. Firstly, components can provide their
service to any number of others, not just the single component which is its “parent” in
the hierarchy. Secondly, components can establish peer-to-peer relationships,
eliminating the need for a single component at the top of the hierarchy. Finally, this
approach avoids the necessity of maintaining a global namespace. Instead, all names
are relative to the context in which they are used.

Federation enables previously distinct systems to be unified without requiring global
changes to their naming structures and system management hierarchies. The
administration functions must ensure the systems are configured appropriately,
e.g. avoiding circular references in those graphs which must be kept acyclic.

 C.1.1 Federation in Object Services

In addition to the use of federation in configuring generic factories, federation is also
applicable to a number of other services.

Trading is a notable example. A global offer space is neither practical nor desirable.
Consequently, there will be multiple traders, each representing a different portion of
the offer space. Offers held by one trader can be made available to the clients of
another trader through federation.

The naming service specification also demonstrates attributes of federation. Naming
contexts can be bound to other naming contexts and requests for name resolution can
be passed across the links. However, it is entirely the concern of the naming context
how it resolves the name within its domain, i.e. it is autonomous.

 C.1.2 Federation Issues

There are a number of issues which need to be addressed for federation to be used in a
cohesive fashion across all object services.

Visibility of the Federation Graph

The naming service makes the configuration of naming contexts into a graph very
visible to the clients. This is essential, because the naming service must provide clients
with a structured namespace.

On the other hand, it is not clear that a client should ever be able to see the internal
structure of a life cycle creation service built with generic and implementation specific
factories.

The trading service falls in between the two extremes. It may be useful for a client to
be able to navigate the structure of a trading service graph in order to have more
control over the visibility of offers. However, this may make clients too dependent
upon the organization of the trading service and limit the flexibility of the system
administrator in reorganizing the trading service to provide the most effective service.

Administration Summary of Life Cycle Service November 1996 6-53

6

Service Interface vs. Administration Interface

In general, it is desirable to federate using the service interface for the links and
reserve the administration interface for the administrators. This approach ensures that
autonomy is retained. However, this precludes the use of compound names in the
administration functions because the administration functions cannot traverse the
graph; only simple names can be used in administration only functions.

However, this is inappropriate for services where graph manipulation is an essential
part of the service. For example, the naming service specification does not distinguish
between administration functions for manipulating the graph and service functions.
This is clearly correct; the clients need to be able to manipulate the graph by creating,
binding and destroying contexts.

Multiple Service Interfaces

A node in a federation graph may be a conspiracy and offer multiple service interfaces,
perhaps one for each point it is bound into the graph. However, for services where the
administration is kept distinct from the service, it is likely that the conspiracy will
support only one administration interface.

In these situations, it becomes necessary for an administrator to be able to match
service interfaces to conspiracies, i.e. to match one or more service interfaces to an
administrative interface. The example in Section C.3 provides a solution to this which,
in theory, will scale, but there may be better ways of doing this.

Cycles and Peer-to-Peer Relationships

The introduction of cycles into a federation graph is a contentious issue. Since peer-to-
peer relationships are a degenerate form of cycle, any service which supports peer-to-
peer relationships must be capable of handling cycles. The major impact of this is to
provide loop detection on operations which would otherwise go out of control. Both
trading and naming services are examples of this kind of service.

However, some services may not be able to handle cycles effectively and will wish to
proscibe them. This probably covers peer-to-peer relationships, although that might be
an acceptable special case. An example of this might be the life cycle creation service,
where information about the current usage of the available resources must percolate up
the graph in order to make informed decisions, but the introduction of cycles would
make this information unclear or even meaningless.

 C.2 Policies

It is frequently necessary to configure the way in which operations are performed in
order to tune the performance, e.g how long a search operation may take, how many
matches can be returned, or how much memory to use for a cache.

6-54 CORBAservices: Common Object Services Specification

6

The same problems exist in distributed systems except that such configuration
parameters must be explicitly passed around. Where different administrative domains
are connected, such configuration parameters cannot be enforced by one domain on the
other. Similarly, users may want to control the configuration but must be prevented
from hogging resources, e.g memory, disk space, etc. Some configuration elements
must be enforced, e.g disk quotas, some elements may specify defaults which can be
changed and some elements may be requests which may or may not clash with hard
limits e.g max memory per process.

Policies are used as a generic solution to this problem – wherever some kind of choice
needs to be made, policies may be used to guide the decision making process.

Table 6-9 provides some examples of policies. which a federated service might
support.

When invoking operations, clients can specify preferences for particular policies.
Providing the service has no value set for that policy, the preference will be simply
added to the policy list for the duration of the request. However, if a service policy is
already specified then the preference will either be ignored or, for policies such as
“maximum_distance”, the more constraining value will be adopted.

As a request traverses a graph, each node will pass its current policy set as preferences.
In this way, the autonomy of individual administrative domains is preserved.

When an object doesn’t implement all choices of a policy, it should not allow its policy
to be modified to an unsupported value. This means that implementation limitations
are handled as Administrative hard limits which provides the correct semantics.

Where no policy is specified by either administrator or client, the implementation
determines its own behavior. However, this decision would not be propagated through
the graph (as a preference), leaving it to each node in the graph to make its own
decision.

Table 6-9 Example policies

Policy Name Meaning

search_algorithm determines whether the federation graph should be
traversed in a depth first or breadth first fashion.

cross_ boundaries determines whether administrative boundaries should be
crossed.

maximum_distance how far to traverse a graph before failing a request.

Administration Summary of Life Cycle Service November 1996 6-55

6

 C.3 An Example LifeCycleService Module

Administrators access the administration functions via the LifeCycleService module,
which defines the LifeCycleServiceAdmin interface. This example is intended to work
with the GenericFactory interface in the specification. As a result, the administration
functions cannot make use of compound names.

#include “LifeCycle.idl”

module LifeCycleService {

typedef sequence <Lifecycle::NameValuePair> PolicyList;
typedef sequence <Lifecycle::Key> Keys;
typedef sequence <Lifecycle::NameValuePair> PropertyList;
typedef sequence <Naming::NameComponent> NameComponents;

interface LifeCycleServiceAdmin {

attribute PolicyList policies;

void bind_generic_factory(
in Lifecycle::GenericFactory gf,
in Naming::NameComponent name,
in Keys key_set,
in PropertyList other_properties)

raises (Naming::AlreadBound, Naming::InvalidName);

void unbind_generic_factory(
in Naming::NameComponent name)

raises (Naming::NotFound, Naming::InvalidName);

Lifecycle::GenericFactory resolve_generic_factory(
in Naming::NameComponent name)

raises (Naming::NotFound, Naming::InvalidName);

NameComponents list_generic_factories();

boolean match_service (in Lifecycle::GenericFactory f);

string get_hint();

void get_link_properties(
in Naming::NameComponent name,
out Keys key_set,
out PropertyList other_properties)

raises (Naming::NotFound, Naming::InvalidName);
};

};

Figure 6-20 The LifeCycleService Module

6-56 CORBAservices: Common Object Services Specification

6

 C.3.1 The LifeCycleServiceAdmin Interface

The LifeCycleServiceAdmin interface provides the basic administration operations
required to enable the lifecycle service to be administered by a set of tools or an
administration service. The operations enable configuration of factories supporting the
GenericFactory interface into a graph and setting of policies for those factories.

bind_generic_factory

This operation binds a factory supporting the GenericFactory interface into a graph.
The name must be unique within the context of the target of the operation. From then
on, that factory can be identified by that name.

In order to make a good decision about which link to choose for a request, the node
needs to be provided with additional information about those factories. This
information may be fairly dynamic, e.g. the current usage of the resources available
through the link, or more static, e.g. the Keys for which the link can provide support.

The key_set parameter is a list of the keys for which the factory can provide
support. In the case of an implementation specific factory, this list will often only have
one member.

The other_properties parameter can be used to provide other static properties
associated with the factory. For example, an “Architectures” property would indicate
the type(s) of machine which the factory could create objects on.

Changes to the static information as well as more dynamic information can be
monitored through the Events service. Each factory would generate events whenever
the information changed significantly (e.g. a new GenericFactory interface with new
keys is bound to the factory, or there is a change in the usage of resources available to
the factory) and these can then be passed to those factories which need to know.

unbind_generic_factory

This operation unbinds the generic factory identified by the name.

void bind_generic_factory(
in Lifecycle::GenericFactory gf,
in Naming::NameComponent name,
in Keys key_set,
in PropertyList other_properties)

raises (Naming::AlreadBound, Naming::InvalidName);

void unbind_generic_factory(
in Naming::NameComponent name)

raises (Naming::NotFound, Naming::InvalidName);

Administration Summary of Life Cycle Service November 1996 6-57

6

resolve_generic_factory

This operation takes the name supplied and returns the reference to the GenericFactory
object.

list_generic_factories

This operation returns a list of the names of all the bound factories.

match_service

This operation returns true if the generic factory interface is supported by the target.

get_hint

This operation returns a hint associated with the target, see Building a Map of a Graph
below.

get_link_properties

This operation returns the key_set and other_properties associated with the
name.

Lifecycle::GenericFactory resolve_generic_factory(
in Naming::NameComponent name)

raises (Naming::NotFound, Naming::InvalidName);

NameComponents list_generic_factories();

boolean match_service (in Lifecycle::GenericFactory f);

string get_hint();

void get_link_properties(
in Naming::NameComponent name,
out Keys key_set,
out PropertyList other_properties)

raises (Naming::NotFound, Naming::InvalidName);

6-58 CORBAservices: Common Object Services Specification

6

Building a Map of a Graph

Administration tools may wish to build a map of a federation graph from scratch and
some of the operations above are provided for that purpose.

First of all, the tool must obtain the set of administration interfaces for all the factories
to be administered. These might be obtained from a number of sources, e.g. a well-
known trading context.

For each interface, the list_generic_factories operation obtains a list of all
the links for each node. Using resolve_generic_factory, a service interface
can be obtained for each link. These can then be matched to an administration interface
using match_service.

Clearly, this does not scale well if there are many nodes involved because of the
average number of invocations of match_service required. This problem can be
solved if one of the other_properties associated with each service interface is a
hint and a hint is available for each administration interface. If the hints are the same,
there may be a match and match_service is called to check. If the hints could be
guaranteed to be unambiguous, the invocation could be avoided altogether, but this
requires a global namespace for the hints. The best that can reasonably be achieved is
to reduce the chance of a clash to a minimum.

The get_hint and get_link_properties can be used for this purpose.

Support for PCTE Objects Summary of Life Cycle Service November 1996 6-59

6

 Appendix D Support for PCTE Objects5

Note – Appendix D is not part of the Life Cycle Services specification. This appendix
defines a set of criteria6 suitable for supporting PCTE objects.

It is intended that objects in a PCTE repository be among those objects that can be
managed though this lifecycle interface. It is reasonable to expect that applications
written for PCTE will use the PCTE APIs to manage the life-cycle of PCTE objects. It
is also reasonable to expect that clients not specifically written for relationship-
oriented objects will not be able to manipulate the life-cycles of PCTE objects.
However, between these two, one can envision clients which desire to be flexible,
working on objects which may or may not be stored in the PCTE repository. One can
also envision object factories, constructed to make use of PCTE which provide
services to clients that are not PCTE applications because they do not have the
appropriate working schemas, etc.

Support for these clients employs a series of conventional interpretations of the
lifecycle operations. This appendix provides one such set of conventions to
demonstrate the feasibility of the use of these interfaces in a context supporting PCTE.

Object references appear in constraint expressions in the form of character strings. Any
implementation of PCTE as a CORBA Object Adapter has to establish a relationship
between these and the corresponding CORBA types, and be able to convert between
them.

 D.1 Overview

A PCTE repository can be viewed as a generic factory. Using whatever naming or
trading services are appropriate, a client wishing to use the PCTE factory obtains an
object reference to it. To support the simple applications intending to operate within
the context of a single PCTE repository, the PCTE factory supports the operations
defined by both the GenericFactory and FactoryFinder interfaces. The client can then
invoke the PCTE factory’s create_object operation, or pass the factory as the
“factory finder” when invoking the move or copy operations to move or copy within
the same PCTE repository. These clients include the servers implementing the move
and copy operations for various PCTE objects as well.

5.PCTE details used here are from the PCTE Abstract Specification, Standard ECMA-149 available from
the European Computer Manufacturers Association.

6.As defined in section 6.2.4 of the life cycle specification.

6-60 CORBAservices: Common Object Services Specification

6

Lifecycle creation, copy, and move operations are influenced by a sequence of criteria.
Criteria are specified as a sequence of name/value pairs. Certain criteria are of interest
to the PCTE factories:

“logical location”

The logical location is used to express the logical connection information that must be
specified when creating or copying a PCTE object. Logical location is a sequence of
name/value pairs expressing a connection for the object. The PCTE factory supports
and requires two:

ORIGIN A string representation of the reference to the object to which the
newly created object is to be connected.

ORIGINLINK The name of the origin object’s link which is to hold the link
from the origin object to the newly created object.

“filter”

The filter is used to express the fact that an object being created, copied, or moved
should reside on the same volume as some other, nearby, object. A filter is an
expression as described in B.3. For PCTE, the term “NEAR=” followed by an object
reference to the designated nearby object indicates that the new object is to be located
at least as near as the same volume to the specified object. “authorization” Although
omitted from table 1-4 because no proposal on authorization has yet been accepted by
OMG, this lifecycle criterion is required to create PCTE objects.

 D.2 Object Creation

The LifeCycle::GenericFactory::create_object operation in this
specification is borne by factory objects. It has two parameters:

1. a key used to identify the desired object to be created and

2. a set of criteria expressed in an NVP-list.

The corresponding PCTE operation is called OBJECT_CREATE. The parameters to
OBJECT_CREATE are obtained from the
LifeCycle::GenericFactory::create_object parameters.

The PCTE operation OBJECT_CREATE has six parameters:

1. the type of object to be created This is the “key” from LifeCycle
create_object.

2. the origin object of the relation anchoring the new object This is the object
identified as the named “ORIGIN” of the logical location criterion.

3. the name of the link from that origin object to the new object This is the string
identified as the named “ORIGINLINK” of the logical location criterion.

4. an optional key for that link This is the string identified as the named “LINKKEY”
of the initialization criteria.

Support for PCTE Objects Summary of Life Cycle Service November 1996 6-61

6

5. an object near whose location the object is to be created This is the string value of
a required filter expression value by the qualifier “NEAR”.

6. an access mask This is the string identified as the named “ACCESS” of the
authorization criteria This string is a simple mapping of the granted and denied
access rights.

Exceptions raised by PCTE are mapped to suitable LifeCycle exceptions.

 D.3 Object Deletion

The LifeCycle::LifeCycleObject::remove operation in this specification is
borne by all life-cycle objects. It has no parameters.

The corresponding PCTE operation is called OBJECT_DELETE. The parameters to
OBJECT_DELETE are obtained from the object to be deleted using information about
that object defined in PCTE’s schema information about the object.

The PCTE operation OBJECT_DELETE has two parameters:

1. the origin object of a relation anchoring the object to be deleted and

2. the name of the link from that origin object to the object to be deleted.

To both ensure that the controlling object is actually deleted and maintain the PCTE
referential integrity constraints the following steps are performed for each reversible
link emanating from the controlling object:

1. Determine the object, o, that the link refers to.

2. Determine the name, r&prime., of the reverse link back from o.

3. Perform PCTE OBJECT_DELETE(o, r&prime.)

The objective is accomplished when all outgoing, reversible links have been dealt with
thus, or before that if one of the OBJECT_DELETE calls fails because the object has
already been deleted.

Exceptions raised by PCTE are mapped to suitable LifeCycle exceptions.

 D.4 Object Copying

The LifeCycle::LifeCycleObject::copy operation in this specification is
borne by all life-cycle objects. It has two parameters:

1. a factory-finder to assist in locating a factory that provides resources for the copied
object

2. a set of criteria expressed in an NVP-list

6-62 CORBAservices: Common Object Services Specification

6

The corresponding PCTE operation is called OBJECT_COPY. Some of the parameters
to OBJECT_COPY can be obtained directly from the LifeCycle copy parameters.
Other required information is obtained from the constraint expression parameter of the
LifeCycle copy.

The PCTE operation OBJECT_COPY has six parameters:

1. the object to be copied This is the bearer object of LifeCycle copy operation.

2. the origin object of the relation anchoring the new object This is the object
identified as the named “ORIGIN” of the logical location criterion.

3. the name of the link from that origin object to the new object This is the string
identified as the named “ORIGINLINK” of the logical location criterion.

4. an optional key for that link This is the string identified as the named “LINKKEY”
of the initialization criteria.

5. an object near whose location the object is to be created This is the string value of
a required filter expression value by the qualifier “NEAR”.

6. an access mask This is the string identified as the named “ACCESS” of the
authorization criteria This string is a simple mapping of the granted and denied
access rights.

The semantics of the copy operation corresponds to the PCTE OBJECT_COPY
semantics. They are based upon details of the object types involved, including which
attributes, links and destination objects are “duplicable”.

Exceptions raised by PCTE are mapped to suitable CORBA standard exceptions.

 D.5 Object Moving

The LifeCycle::LifeCycleObject::move operation in this specification is
borne by all life-cycle objects. It has two parameters:

1. a factory-finder to assist in locating a factory that provide resources for the moved
object

2. a set of criteria expressed in an NVP-list

The corresponding PCTE operation is called OBJECT_MOVE. The parameters to
OBJECT_MOVE can be obtained directly from the LifeCycle copy parameters or from
defaults.

The PCTE operation OBJECT_MOVE has three parameters:

1. the object to be copied This is the bearer object of LifeCycle move operation.

2. an object near whose location the object is to be created This is the string value of
a required filter expression value by the qualifier “NEAR”.

3. scope - whether to move the object itself or the object and all its components

This will be defaulted to ATOMIC.

